欧美成人小视频,亚州综合激情另类久久久,国产av日韩av一区二区三区 ,熟女性饥渴一区二区三区,国产精品半夜,无码 制服 丝袜 国产 另类,久久久男人天堂,日本久久久久亚洲中字幕
        撥號18861759551

        你的位置:首頁 > 技術文章 > 5光學系統的機械設計,裝配和對準的注意事項

        技術文章

        5光學系統的機械設計,裝配和對準的注意事項

        技術文章

        5 Considerations for the Mechanical Design, Assembly, and Alignment of Optical Systems

        To expand on the tips provided in 5 Tips for Designing with Off-the-Shelf Optics, here are some important assembly items to consider when working on an optical design. Typically, optical designers use ray tracing software to construct an optical design, however, the software presents a system that is, essentially, floating in air. When you ultimay purchase and/or manufacture the optical components, you'll need a way to mount, assemble, and possibly align that system. By including considerations for mechanical design, assembly, and alignment in the optical design stages, you can save significant time and reduce the need for costly changes and component redesign later.

         

        1. Consider Package Size and Weight

        One of the first things you should consider when planning how to mount optical components is potential size or weight limitations this can drive your overall approach to the mechanical mounting design for the optics. Are you setting up prototype components on a breadboard with an entire table available? Is there a limited amount of space? Is this being carried by a person? These types of considerations may limit the number of possible mounting and/or alignment options. You should also consider where the object, image, and s of your system will be located, and if you need to be able to access them after the final assembly. The s, a fixed-size or adjustable physical aperture that limits the bundle of light that can pass through a system, can be located somewhere within the optical design, or at either end. It is important to ensure that there is enough space where the location of the s is in your optical design so it can be physically achieved in the mechanical design. As shown in Figure 1, the left optical design example is a feasible design, whereas it is unlikely an adjustable iris could be fit between the doublets in the right example. The potential space restriction is an easy fix in the optical design stage, but difficult to fix later on.

        Figure 1: Optical design examples of a 1:1 image relay system requiring an adjustable iris

         

        2. Is it Designed to be Reassembled?

        When you are planning the assembly process for your optical design, one detail that can drive design decisions is whether or not the assembly is one-time only or if it will be disassembled and reassembled. If there is no need to disassembly, then using adhesives or other permanent/semi-permanent mounting methods may not be a problem. However, if you need to disassemble or modify the system, consider in advance how this will be done. If you are swapping out parts, such as rotating different coated mirrors in and out of the same setup, determine if you will be able to access those components easily and if you need to maintain the alignment of the component. This is where kinematic mounting options or the TECHSPEC® Optical Cage System, such as those shown in Figure 2, can save you a lot of time and frustration.

         

        3. Understand Motion and Alignment Requirements

        For some simple systems, optical components can simply be placed in their holders or a barrel and the assembly and alignment is complete without need for adjustments. However, in many cases, optical components must be aligned properly and possibly adjusted during use to maintain the required design performance. When creating an optical design, consider if you will need adjustments for decenter (translation in X and Y), axial motion (translation in Z), angular motion (tip/tilt), and in the case of components such as polarizers, waveplates, or diffraction gratings, orientation. Such adjustments may be required for individual components, the light source, the camera/image plane, or the entire system. Not only is it important to know what adjustment, the more expensive the mechanics will be and more skill we be required from the assembler. Understanding the motion requirements can save time and money.

         

        4. Avoid Stray Light

        Stray light is a general term that applies to any unwanted light in an optical system. Light traveling where it was not intended in the optical design can cause a variety of issues including ghost (multiple) images, reduced image contrast, or even glass failures in the case of high power laser applications. Standard ray tracing software packages typically have some level of first order stray light analysis that can be used to evaluate if this is a potential concern for your optical system. More thorough investigations can also be completed using a non-sequential ray trace analysis. Figure 3 shows a stray light analysis completed in FRED (optical design software) to investigate the effects of light reflecting off a particular metal surface.

        Figure 3: Stray Light Analysis can help Avoid Image Contrast Problems in the Final Design

         

        If stray light is a potential problem for your optical system, there are a few approaches to mitigate the effects. For example, threading the inner diameters of barrels or placing additional apertures to block stray light from exiting the system can be used to block unwanted rays. Additionally, mounting components can be blackened (i.e. black anodized for aluminum or black oxide for steels) or covered with material. The edges or lenses can also be blackened with paint or ink, as shown in Figure 4. Ideally, any stray light problems should be recognized during the design phase and the elements or image plane can be moved or modified to resolve the issue.

         

        5. Watch Out For Environmental Effects

        As mentioned earlier, when designing an optical system using modeling software, it is typically floating in air with no environmental effects acting upon it. In reality, however, the optical system may see many adverse environmental conditions including stress, acceleration/shock (if it is dropped), vibration (during shipment or operation), temperature fluctuations, or it may need to operate underwater or in another substance. If you anticipate your optical system will not be operating in air under controlled conditions, further analysis should be completed to either minimize the environmental effects through the design (passive solution) or having an active feedback loop to maintain the performance of the system. Most optical design programs can stimulate some of these aspects, such as temperature and pressure, but additional programs might be required for a complete environmental analysis.

        聯系我們

        地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
        24小時在線客服,為您服務!

        版權所有 © 2026 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

        在線咨詢
        QQ客服
        QQ:17041053
        電話咨詢
        0510-68836815
        關注微信
        主站蜘蛛池模板: 国产18禁黄美女网站一区二区| 亚洲一区二区三区无码国产| 野花韩国视频中文免费观看7| 精品一区二区三区不卡 | www.狠狠| 久久精品国产只有精品96| 贵溪市| 国产高清一区在线观看| 中文字幕Aⅴ人妻一区二区苍井空 亚洲中文字幕久久精品蜜桃 | 免费国产一级特黄aa大片在线 | 偷窥 性别 瘾 xxxxx| 成人小说亚洲一区二区三区| 色狠狠色婷婷丁香五月| 日韩偷拍视频一区二区三区| 国产激情啪啪自拍视频| 欧美一级视频在线| 国产亚av手机在线观看| 日本午夜精品一区二区| 亚洲成AV人片在一线观看| 国模偷拍视频一区二区| 人妻无码AⅤ中文系列久久免费| 四虎精品| 亚洲色www成人永久网址| 亚洲色图视频一区中文字幕| 国产一区二区三区在线免费播放| 国产激情久久久久久熟女老人| 乳欲人妻办公室奶水| 日韩高清视频 一区二区| 宁都县| 欧美日韩国产在线人成dvd| 99re热精品视频国产免费| 国产欧美日韩一区二区三区在线 | 亚洲熟女国产熟女二区三区| 亚洲国产精品久久九色| 国产在线视欧美亚综合| 日产国产一区二区不卡| 国产白丝喷水娇喘视频| 久久99精品国产一区二区三区| 亚洲国产精品国自产拍av| 激情人妻网址| 1区2区3区4区产品乱码入口|